
This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

ANION CATALYZED ACID SOLVOLYSIS OF INDIUM(III) PORPHYRINS Peter Hambright^a

^a Department of Chemistry, Howard University, Washington, DC, USA

To cite this Article Hambright, Peter(1983) 'ANION CATALYZED ACID SOLVOLYSIS OF INDIUM(III) PORPHYRINS', Journal of Coordination Chemistry, 12: 4, 297 – 301 To link to this Article: DOI: 10.1080/00958978308073861 URL: http://dx.doi.org/10.1080/00958978308073861

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1983, Vol. 12, pp. 297-302 0095-8972/83/1204-0297 \$18.50/0

ANION CATALYZED ACID SOLVOLYSIS OF INDIUM(III) PORPHYRINS

PETER HAMBRIGHT

Department of Chemistry, Howard University, Washington, DC 20059, USA

(Received August 2, 1981)

Solvolysis of several water soluble indium(III) porphyrins is catalyzed by both protons and anions. For indium(III)-*tetrakis*-(4-sulfonato-phenyl)porphyrin, the anion effect is in the order Cl⁻, Br⁻, SCN⁻ D ClO₄, BF⁻₄, HSO⁻₄. In HClO₄/NaCl, Rate = k(In³⁺-P) (Cl⁻)^{3 (h₀)³⁺³.}

INTRODUCTION

The kinetics of the acid catalyzed solvolysis of Cu^{2+} , Co^{2+} and Ni^{2+} coordinated to positively charged^{1,2} tetrakis-(4-N, N, N-trimethylanilinium)porphyrin (M^{2+} -TAP) in HCl required acid concentrations above the 1 M level for convenient rates, and could be described by the rate law Rate = k (M^{2+} -TAP) (h_o)ⁿ, where the Hammett acidity function H_o (= -log h_o) measures the tendency of the solution to transfer a proton to a neutral base.³ The "n" values were found to be above 2, and while suggesting multiple protonation of the metalloporphyrin,⁴ the possible role of anions in the overall solvolysis process was obscure for several reasons. Thus the positively charged porphyrins studied were insoluble or rapidly oxidized in high concentrations of mineral acids containing weakly coordinating anions. In addition, the large dependence of rate upon (h_o)ⁿ and the small changes in total acid concentration needed to produce large changes in h_o made it experimentally difficult to vary the HX concentration by amounts sufficient to separate the effect of h_o from that of X⁻.

To study such anion effects, we have used indium(III)-tetrakis-(4-sulfonatophenyl)porphyrin, In^{3+} -TPPS₄, which is found to be stable for hours in HClO₄ below 6 M acid levels at 25°. The addition of low concentrations of NaX salts to such solutions leads to rapid acid solvolysis, and provides an opportunity to probe h_0 and X⁻ independently. The positively charged In^{3+} -TAP and indium(III)-tetrakis-(N-Methyl-4-pyridyl)porphyrin, In^{3+} -TMPYP, both slow to be solvolyzed in HClO₄, were compared with In^{3+} -TPPS₄ in HCl media.

EXPERIMENTAL

The synthesis of water soluble indium(III) porphyrins has not been described. Briefly, H_2 -TMPYP and an excess of InCl₃.nH₂O were refluxed overnight in HCl at pH 2. The solution was cooled, filtered, and the porphyrin precipitated with NaClO₄, washed with water and air-dried. For In³⁺-TMPYP.2H₂O: Calcd. for In(C₄₄H₂₆N₈).5ClO₄.2H₂O: C, 39.89; H, 3.04; N, 8.46%. Found: C, 39.86; H, 2.98; N, 8.32%. In 10⁻² M HCl, λ_{max} 424 mm ($\epsilon = 3.9 \times 10^5$ M⁻¹ cm⁻¹), 518 nm (3.7×10^3), 558 nm (2.3×10^4) and 597 nm (4.7×10^3). In³⁺-TAP was prepared in a similar fashion: 416 nm (5.4×10^5), 514 nm (3.3×10^3), 553 nm (2.0×10^4) and 609 nm (7.5×10^3). For In³⁺-TPPS₄, the Na salt of H₂-TPPS₄ was refluxed overnight with an excess of InCl₃.n H₂O at pH ca. 7, and no reaction occurred. The addition of 10 cm³ of acetic acid to 100 cm³ of the hot solution

P. HAMBRIGHT

led to the immediate formation of the purple In^{3+} -TPPS₄, from the green free base/diacid mixture. The solution was cooled, filtered, and passed through a cation column in the Na⁺ form at pH 7, and evaporated. The solid was extracted into methanol, concentrated, and the porphyrin precipitated with acetone. [λ_{max} at 417 nm (7.0 × 10⁵), 516 nm (3.6 × 10³), 554 nm (2.3 × 10⁴) and 607 nm (1.1 × 10⁴)]. The spectra of all three porphyrins were similar⁵ to that of indium(III)-tetraphenylporphyrin chloride, In(TPP)CI.

The kinetics were followed spectrophotometrically at 25° in the Soret region at porphyrin concentrations of *ca*. 10^{-6} M. Isosbestic points were found at 700, 575, 495, 435 and 390 nm as \ln^{3+} -TMPYP transformed into the di-acid H₄-TMPYP in 4 M HCl, and other porphyrins showed similar isosbestic behavior in the Soret region.

RESULTS AND DISCUSSION

The kinetics of the acid solvolysis reactions of the three indium porphyrins were firstorder with respect to porphyrin concentration over three half-lives in all of the solvents.

$$\ln -P^{+} + 4 HX \longrightarrow \ln^{3+} + 4 X^{-} + H_4 - P^{2+}$$
(1)

The reactions were studied as a function of HCl concentration (and HNO₃ for $In^{3+}-TPPS_4$) and plots of the log of the observed rate constant $k_o \nu s - H_o$ were linear. The rate law in the neat solvents were thus of the form Rate = k ($In^{3+}-P$) (h_o)ⁿ, and the results are shown in Table I.

In 5.3 M HClO₄, the concentration of \ln^{3+} -TPPS₄ decreased by less than 1% after 5.5 hours, indicating that a first order solvolysis half-life would be greater than 380 hours. Making this solution 0.1 M in NaClO₄, NaCN, Na₂SO₄ or NaBF₄ was without effect, while the addition of 0.1 M NaCl led to a solvolysis half-time of 160 seconds. Figure 1 (top), shows that in 5.3 M HClO₄, the reaction was second order in added chloride from 5×10^{-2} to 4×10^{-1} M, and $k_0/(Cl^{-})^2 = (4.3 \pm 0.3) \times 10^{-1}$ M⁻² s⁻¹. The same was found for added NaSCN, where $k_0/(SCN^{-2}) = (3.7 \pm 0.4) \times 10^{-1}$ M⁻² s⁻¹. With NaBr, while the reaction was neither first nor second order in bromide, the rates were of a similar order of magnitude. In a solution of 0.29 M NaCl, the In³⁺-TPPS₄ reactions were studied as a function of HClO₄ concentration. The linear plot of log($k_0/(Cl^{-})^2$) vs -H₀ is also shown in Figure 1. It was found that Rate = k (In³⁺-TPPS₄) (Cl⁻)² (h₀)²⁻², with k = (8.6 \pm 0.7) \times 10^{-7} M⁻⁴⁻² s⁻¹, with a correlation coefficient of r = 0.9962.

Low concentrations of the positive porphyrins $\ln^{3+}-TAP$ and $\ln^{3+}-TMPYP$ were soluble in HClO₄. In 5.3 M HClO₄, the acid solvolysis reactions were similarly slow, and orders of magnitude faster after the addition of NaCl.

In HCl, the three indium porphyrins have "n" values ranging from 2.2 to 2.4, presumably indicating that two protons are required for the solvolysis reaction, a result similar

 TABLE I

 Indium(III)-porphyrin acid solvolysis kinetic parameters at 25°

Porphyrin	Solvent	n ^a	k ^a	r ^b
In ³⁺ -TMPYP	HC1	2.2	1.1 × 10 ⁻⁶	0.9998
In ³⁺ -TAP	HCI	2.4	8.7 × 10 ⁻⁴	0.9987
In ³⁺ -TPPS,	HCI	2.4	9.3 x 10 ⁻⁶	0.9996
In ³⁺ -TPPS	HNO,	2.1	2.3 × 10 ⁻⁶	0:9986

^aRate = k ($\ln^{3+}-P$) (h_0)ⁿ; k ± 10% in units of M⁻ⁿ s⁻¹ (n ± 0.1). ^b Correlation coefficient.

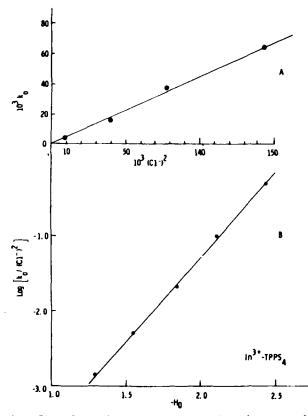


FIGURE 1 Top: Plot of the observed rate constant k_0 (f^1) vs. ($C\Gamma$)³ for In^{3+} -TPPS₄ in 5.3 M HClO₄. Bottom: Plot of log ($k_0/(C\Gamma)^2$ vs. $-H_0$ for In^{3+} -TPPS₄ in 0.29 M NaCl with HClO₄.

to that found for Fe^{2+} , Mg^{2+} , Zn^{2+} and Cd^{2+} porphyrins,^{2,6} where, at lower acidities, the rates are proportional to $[H^+]^2$. The In^{3+} -TAP and In^{3+} -TMPYP porphyrins have an overall formal charge of 5+. Benzenesulfonic acid is half dissociated in 1.1 M acid, and thus the sulfonic acid groups on In^{3+} -TPPS₄ may be partially protonated under the reaction conditions (2 to 6 M acid). H₀ probably does not truly describe proton donation to such charged species. Nevertheless, the order of the k values, as noted before,⁴ indicates that the least basic porphyrin is solvolyzed the slowest.

At an ionic strength of 0.1 (HClO₄/NaClO₄), the rate law⁸ for the acid catalyzed solvolysis of Zn^{2+} -TPPS₄ was found to be first-order in porphyrin and second order in [H⁺]. The addition of NaCl, NaBr and NaI at constant pH and overall ionic strength produced only small rate effects, and the same rate law and absence of strong anion terms⁹ was found for Zn^{2+} -TAP in HNO₄ NaNO₃. In contrast, In^{3+} -TPPS₄ (and In^{3+} -TAP) is stable for long periods of time in HClO₄/NaClO₄, and the marked catalytic effects of added NaCl and NaSCN (HSCN) indicates that the zinc(II) and indium(III) porphyrins are solvolyzed by rather different mechanisms. The composition of the activated complex is $1 2H^+$, Zn-TPPS₄ | for the former, and $1 2H^+$, $2CI^-$, In^{3+} -TPPS₄ | for the latter. Such anion catalysis has been found¹⁰ before for Zn^{2+} -TMPYP, where Rate = k (Zn-P) (H⁺)² (X⁻)ⁿ, with n = 2 for CI⁻, Br⁻ and Γ , and n = 1 for NO₃⁻. The present In^{3+} -TMPYP reaction is also strongly anion dependent. However, anion catalyzed reactions are usually found for the TMPYP ligand (for example metal incorporation¹¹ and metal exchange

P. HAMBRIGHT

processes¹²), and it is not clear to what extent the catalysis is due to the metal, the positive porphyrin type, or ion atmosphere requirements. The metal-porphyrin formation reactions of H_2 -TPPS₄ and H_2 -TAP are relatively anion insensitive^{8,11} and these In^{3+} -P acid solvolysis results possibly provide evidence that protonation of the porphyrin as well as ligation of the metal (which lowers the overall charge, may increase metal-porphyrin bond lengths, stabilize the solvolyzed product ion and prevent reformation of metal-porphyrin bonds) assist one-another in porphyrin deformation and metal ion removal.

The formation constants for aquo- \ln^{3+} -anion addition⁷ parallel the \ln^{3+} -TPPS₄ solvolysis rates; CI⁻, Br⁻, SCN⁻ > NO₃ > ClO₄. In this connection, Reynolds¹³ also found the rate order HCl > H₂SO₄ > HClO₄ for the acid solvolysis of Fe³⁺-TPPS₄ in alcoholwater-acid media, where log k₀ was proportional to $-H_0$ only in H₂SO₄, and where the alcohol appeared to be necessary for rapid solvolysis in HClO₄.

The \ln^{34} -TPPS₄ reactions in HCl followed in 3 to 5 M HCl vary in rate by a factor of 25, and are adequately described in this range by $k_0 = 9.3 \times 10^6 (h_0)^{2.4}$. While no hint of anion catalysis appears, the fact that k is smaller in HNO₃ than in HCl, and not measurable in neat HClO₄ indicates the hidden information in the HCl data. Assuming a $(C\Gamma)^2$ dependence in neat HCl, recalculation gives $k_0/(C\Gamma)^2 = 4.4 \times 10^{-6} (h_0)^{1.8}$, with, therefore, rather different parameters than those found in HClO₄ with small added amounts of NaCl. While it is known that NaX additions to HX solutions increases or decreases h_0 , this effect is linear in NaX, and would be small for the concentrations used in this study.³ It must be concluded that such simple $(h_0)^n$ data for metalloporphyrin acid solvolyses for a given acid are simply empirical correlations which may obscure interesting mechanistic features if the reactions are not studied in a range of solvents.

The fact that \ln^{3+} is 0.61 Å above the porphyrin plane¹⁴ in In(TPP)Cl, while the corresponding distance is 0.38 Å in Fe(TPP)Cl, 0.27 Å in Mn(TPP)Cl and 0.74 Å in Tl(TPP)Cl correlates with the acid solvolysis rate order $Tl^{3+} > In^{3+} > Fe^{3+} > Mn^{3+}$ that we find for M^{3+} -TAP complexes. Al³⁺ and Ga³⁺-TMPYP compounds are stable for days in concentrated HCl. We also note that In^{3+} -TPPS₄ was destroyed (oxidized) in 5.3 M HClO₄ containing 0.1 M NaNO₃, and similar behavior was found for In(TPP)Cl in NaNO₃/HAc media at higher temperatures.¹⁵

ACKNOWLEDGEMENT

This work was supported by the Howard University NIH Biomedical Research Grant, 5-SO6-RR-08016-9.

REFERENCES

- 1 A. Adeyemo, A. Valiotti, C. Burnham and P. Hambright, Inorg. Chim. Acta Letters, 54, L63 (1981).
- 2 A. Valiotti, A. Adeyemo and P. Hambright, Inorg. Nucl. Chem. Letters, 17, 213 (1981).
- 3 C.H. Rochester, Acidity Functions, Academic Press, London, 1970.
- 4 B. Shah, B. Shears and P. Hambright, J. Amer. Chem. Soc., 93, 776 (1971).
- 5 M. Bhatti, W. Bhatti and E. Mast, Inorg. Nucl. Chem. Letters, 8, 133 (1972).
- 6 A. Shamim and P. Hambright, Inorg. Chem., 19, 564 (1980).
- 7 L.G. Sillen and A. Martell, Stability Constants, and Stability Constants, Supplement 1, The Chemical Society, London, 1964.
- 8 S. Cheung, F. Dixon, E. Fleischer, D. Jeter and M. Krishnamurthy, Bioinorg. Chem., 2, 281 (1973).
- 9 A. Thompson and M. Krishnamurthy, J. Inorg. Nucl. Chem., 41, 1251 (1979).
- 10 B. Shah and P. Hambright, J. Inorg. Nucl. Chem., 32, 3420 (1970).
- 11 H. Baker, L. Wagner and P. Hambright, J. Amer. Chem. Soc., 95, 5942 (1973).

IN(III) PORPHYRIN KINETICS

- H. Baker, L. Wagner, L. Ross and P. Hambright, *Inorg. Chem.*, 12, 2200 (1973).
 W. Reynolds, K. Kooda, B. Florine, N. Johnson and K. Thielman, Int. J. Chem. Kinetics, 22, 97 (1980).
- 14 R. Ball, K. Lee, A. Marshall and J. Trotter, *Inorg. Chem.*, 19, 1463 (1980).
 15 A. Nunn, J. Radioanalytical Chem., 53, 291 (1979).